skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hair, Isaac M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Koucký, Michal; Bansal, Nikhil (Ed.)
    We give a public key encryption scheme that is provably secure against poly-size adversaries, assuming nlogαn hardness of the standard planted clique conjecture, for any α ∈ (0,1), and a relatively mild hardness conjecture about noisy k-LIN over expanders that is not known to imply public-key encryption on its own. Both of our conjectures correspond to natural average-case variants of NP-complete problems and have been studied for multiple decades, with unconditional lower bounds supporting them in a variety of restricted models of computation. Our encryption scheme answers an open question in a seminal work by Applebaum, Barak, and Wigderson [STOC’10]. 
    more » « less
    Free, publicly-accessible full text available June 15, 2026
  2. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    We revisit a standard polygon containment problem: given a convex k-gon P and a convex n-gon Q in the plane, find a placement of P inside Q under translation and rotation (if it exists), or more generally, find the largest copy of P inside Q under translation, rotation, and scaling. Previous algorithms by Chazelle (1983), Sharir and Toledo (1994), and Agarwal, Amenta, and Sharir (1998) all required Ω(n²) time, even in the simplest k = 3 case. We present a significantly faster new algorithm for k = 3 achieving O(n polylog n) running time. Moreover, we extend the result for general k, achieving O(k^O(1/ε) n^{1+ε}) running time for any ε > 0. Along the way, we also prove a new O(k^O(1) n polylog n) bound on the number of similar copies of P inside Q that have 4 vertices of P in contact with the boundary of Q (assuming general position input), disproving a conjecture by Agarwal, Amenta, and Sharir (1998). 
    more » « less